Repeating fractions
(ϕ5−ϕ)e52π1≡1+1+1+1+1+⋯e−8πe−6πe−4πe−2π
Summation notation
(k=1∑nakbk)2≤(k=1∑nak2)(k=1∑nbk2)
Sum of a Series
i=1∑k+1i=(i=1∑ki)+(k+1)=2k(k+1)+k+1=(i=1∑ki)+(k+1)=2k(k+1)+k+1=2k(k+1)+2(k+1)=2(k+1)(k+2)=2(k+1)((k+1)+1)
Product notation
1+(1−q)q2+(1−q)(1−q2)q6+⋯=j=0∏∞(1−q5j+2)(1−q5j+3)1, for ∣q∣<1.
Calculus
∫udxdvdx=uv−∫dxduvdx
Cross Product
V1×V2=∣∣∣∣∣∣∣i∂u∂X∂v∂Xj∂u∂Y∂v∂Yk00∣∣∣∣∣∣∣
Matrices
⎝⎛a11a21a31a12a22a32a13a23a33⎠⎞
⎣⎢⎡0⋮0⋯⋱⋯0⋮0⎦⎥⎤
Case definitions
f(n)={2n,3n+1,if n is evenif n is odd
返回顶部 ↑
留下评论